Maths revision

Learn these...

KNOW YOUR TABLES!

Daily work to keep sharp will make you a confident mathematician.

Useful Mathematical Language

Angles	Angles are formed when 2 straight lines meet. Measured using degrees (°).	
Acute angles	Smaller than 90 degrees.	
Right angles	Measure exactly 90 degrees.	
Obtuse angles	Greater than 90 degrees but less than 180 degrees.	
Reflex angles	Greater than 180 degrees.	
Area	The amount of surface a shape takes up. Measured in centimetres squared (cm²).	
Calculate	Work out	
Capacity	The amount that something can hold. It can be measured in litres, millilitres or in cubic centimetres e.g. 100cm ³ .	
Century	= 100 years	
Decade	= 10 years	
Degree	The unit of measurement we use for measuring angles and temperatures.	

Difference	To find the difference between 2 numbers, you need to take the smaller number away from the larger one. E.g. the difference between 10 and 4 is 6.
Equilateral triangle	A triangle with sides of equal lengths and equal angles (all equal 60°).
Factors	A factor is a whole number which will divide exactly into another whole number. E.g. the factors of 12 are 1, 12, 2, 6, 3 and 4.
Inverse operation	If you have a calculation with a missing number, you can use the inverse operation to solve it. + and - are the inverse of each other x and ÷ are the inverse of each other
Mean	To find the mean of a set of numbers, you add all the numbers together and then divide by the number of results you have

Multiple	Multiples are whole numbers that a larger number can be made of by adding lots of the smaller number together. E.g. 12 is a multiple of 3
Percentage (%)	Means 'out of 100'. 20% = 20 out of 100
Perimeter	The distance around the outside of a shape.
Prime numbers	Numbers which will divide exactly only by themselves and 1. These are the prime numbers to 30: 1 2 3 7 11 13 17 19 23 29
Product	The answer when numbers have been multiplied together. E.g. the product of 3 and 4 is 12
Right-angled triangle	A triangle where one of the angles is a right angle (90°).
Scalene triangle	A triangle where no sides are the same length and no angles are the same measurement.

Square number	The product when a number is multiplied by itself. Square number to 100 are: 1 4 9 16 25 36 49 64 81 100
Sum	When numbers have been added together. E.g. the sum of 3 and 4 is 7

<u>Place value</u>

<u>Rounding</u>

<u>Addition</u>

Learn your number facts (pairs of numbers that add to 10, 20 and 100).

Here are some different written methods you could use:

Partitioning...

Columns...

$$\underline{Method 1} \qquad \begin{array}{c} 121 \\ + 47 \\ \hline 100 \\ 60 \\ \hline 8 \\ \hline 168 \qquad 271 \\ + 93 \\ \hline 364 \\ \end{array}$$

<u>Subtraction</u>

Learn your number facts: learn the corresponding subtractions to addition pairs of numbers. For example, if you learn that 5 + 3 = 8, you also know that 8 - 5 = 3 and 8 - 3 equals 5.

Here are some different written methods you could use:

36 - 24 = 36 - 20 - 4 = 12Partitioning... 436 - 204 = 436 - 200 - 4 = 232

Number line... 100 1 × 3 Columns <u>Multiplication</u> Know your tables!

Here are some different written methods you could use:

Repeated addition...
$$13 \times 5$$

 $7 3$
 $7 3$
 $7 3$
 $7 3$
 $7 3$
 $7 3$
 $7 3$
 $7 3$
 $7 3$
 $7 3$
 $7 3$
 $7 3$
 $7 3$
 $7 3$
 $7 3$
 $7 3$
 $7 4 \times 6$
 $10 \times 6 = 60$
 $4 \times 6 = 24$
 $70 \times 6 = 24$
 $74 \times 6 = 24$
 $70 \times 6 = 516$
 $70 \times 6 = 516$
 $70 \times 6 = 516$
 $70 \times 6 = 516$

'Grid' method...

Standard columns method...

² 35 <u>x 5</u> 175 Example 1:

<u>Step 1</u> - Start with the units. $5 \times 5 = 25$ (carry the 2 tens over to the tens column).

<u>Step 2</u> - 3 x 5 = 15. Add the 2 (carried over) to give 17.

<u>Step 1</u> - Position the digits in their place value columns.

<u>Step 2</u> - Multiply the <u>top units</u> by the <u>lower units</u>: 5 x 6 = 30. The 'O' goes in the units column and the '3 tens' are carried over to the top ten.

<u>Step 3</u> - Multiply the <u>top tens</u> by the <u>lower units</u>: $8 \times 6 =$ 48. Add the 3 tens carried over which makes 51. The '1' is placed in the tens column and the '5' is carried over to the hundreds column.

<u>Step 4</u> - Multiply the <u>top hundreds</u> by the <u>lower units</u>: 4 x 6 = 24. Add the 5 (carried over) = 29.

<u>Step 5</u> - Write a zero in the units column below the first answer to show that all the answer is multiplied by 10.

<u>Step 6</u> - Multiply the <u>top units</u> by the <u>lower tens</u>: $5 \times 1 = 5$. Write 5 in the tens column.

<u>Step 7</u> - Multiply the <u>top tens</u> by the <u>lower tens</u>: 8 x 1 = 8. Write the answer in the hundreds column.

<u>Step 8</u> - Multiply the <u>top hundreds</u> by the <u>lower tens</u>: 4 x 1 = 4. Write 4 in the thousands column.

<u>Step 9</u> - Lastly, add the two products together using column addition: 2910 + 4850 = 7760.

<u>Step 10</u> - Check your workings.

<u>Division</u>

Know your tables!

Once you know your tables, your understanding of inverse can help you to work out the answer. For example, if you know that $4 \times 7 = 28$ then you know that $28 \div 4 = 7$ AND $28 \div 7 = 4$.

Here are some different written methods you could use:

Chunking	455 ÷ 3	455	
		- 300	= 100 lots of 3
		155 - 150	= 50 lots of 3
Short division		- 3	= 1 lot of 3
(bus stop)		2	= 151 r 2
	455 ÷ .	4	27.5
		2 4	5 '5 .'0

A step by step guide to short division can be found at:

http://www.bgfl.org/bgfl/custom/resources_ftp/client_ftp/ks2/maths /school_booster/busstopdivision.html

This method is sometimes referred to as the 'bus stop' method.

Fraction wall

Use this wall to help you understand equivalence between fractions (fractions that have the same value).

Using this wall, you can see that 1/2 = 2/4 = 3/6 = 4/8 = 5/10 = 6/12.

	1										
10		1	L 2					1	L 2		
	1			1 3			1 3				
	1 4			$\frac{1}{4}$			$\frac{1}{4}$			$\frac{1}{4}$	
15			1 5			L 5		1 5			1 5
1		1			1	1					$\frac{1}{6}$
1 8		1 8	1 8		1 8	$\frac{1}{8}$		1 8	1		1 8
1 10	1 10	1		1 10	1 10	1 10	1 10		0	1 10	1 10
$\frac{1}{12}$	1 12	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	1 12	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$

Fractions, decimals and percentages

Try to learn these equivalences - they will be VERY useful!

Fraction	Decimal	Percentage
<u>1</u> 2	0.5	50%
<u>1</u> 4	0.25	25%
<u>3</u> 4	0.75	75%
<u>1</u> 5	0.2	20%
<u>1</u> 10	0.1	10%

<u>Measures</u>

Learn these measurements - they are VERY useful!

Liquids...

1 litre = 1000 millilitres (1 L = 1000 ml)

Mass/weight...

1 kilogram = 1000 grams (1 kg = 1000 g) 1/2 kg = 0.5 kg = 500 g 1/4 kg = 0.25 kg = 250 g 3/4 kg = 0.75 kg = 750 g

Length... 1 kilometre = 1000 metres (1 km = 1000 m) 1 metre = 100 centimetres (1 m = 100 cm) 1 centimetre = 10 millimetres (1 cm = 10 mm)

5 miles = 8 kilometres

Money...

One pound = 100 pence 50p = £0.50 25p = £0.25 10 × 10p = £1 5 × 20p = £1

<u>Time</u>

One year = 365 days One leap year (every 4 years) = 366 days

12 months in a year

A fortnight = 2 weeks

£1 = 100p

A week = 7 days A day = 24 hours An hour = 60 minutes A minute = 60 seconds

PARALLEL

means

lines which never cross & stay the same distance apart

Types of quadrilateral

Square

Properties:

- all sides the same length
- 4 lines of symmetry
- 4 right angles
- 2 pairs of parallel sides

<u>Trapezium</u>

Properties:

• 1 pair of parallel sides

Properties:

- all sides the same length
- opposite angles are equal
- 2 lines of symmetry
- 2 obtuse, 2 acute angles
- 2 pairs of parallel sides

Kite

Properties:

- 2 pairs of adjacent sides are equal
- opposite angles are equal
- 1 line of symmetry

<u>Parallelogram</u>

Properties:

- opposite sides are equal length
- opposite angles are equal
- 2 pairs of parallel sides
- 2 obtuse, 2 acute angles
- No lines of symmetry

Rectangle

Properties:

- opposite sides are equal length
- 2 lines of symmetry
- 4 right angles
- 2 pairs of parallel sides

Features of 3D shapes

The angles of <u>any</u> quadrilateral will always add up to 360°

A circle's radius is the distance from the centre of the circle to the outer edge.

A circle's diameter is the length of a line through the centre, from one edge to another.

<u>د</u>ں

A circle's circumference is the distance around the edge.

Transformations

reflection

• rotation

translation

<u>Useful websites</u>

There are several good websites for practising Maths at home. You may like to look at:

<u>http://resources.woodlands-junior.kent.sch.uk/maths/</u> <u>http://www.mathsisfun.com/</u> - Covers all areas of Maths. Lots of good logic puzzles!

<u>http://www.coolmath4kids.com/</u> - Covers all areas of maths <u>http://www.bbc.co.uk/bitesize/ks2/maths/</u> - Covers all areas of maths <u>http://www.transum.org/Software/SW/Starter_of_the_day/i</u> <u>n dex.htm</u> - Good for years 5 and 6.

<u>http://www.maths-games.org/times-tables-games.html</u> - Good website for grouping games for all areas of maths from various websites. <u>http://www.mad4maths.com/</u> - Fun games for KS2 children. <u>http://www.crickweb.co.uk/ks2numeracy.html</u> - Good variety of maths games.

<u>http://www.topmarks.co.uk/Flash.aspx?f=SpeedChallenge</u> -Speed challenge activities for practising times tables, rounding, number bonds.

<u>http://mathszone.webspace.virginmedia.com/mw/add_sub/3d_3</u> <u>d_add.swf</u> - Column addition.

<u>http://www.amblesideprimary.com/ambleweb/mentalmaths/pyra</u> <u>mid.html</u> - Pyramid addition.

<u>http://mathsframe.co.uk/en/resources/resource/48/column_su</u> <u>btraction</u> - Various maths practise.