

probsit

Learn these...

x	1	8	8	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
8	2	4	6	8	10	12	14	16	18	20
8	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100

KNOW YOUR TABLES!

Daily work to keep sharp will make you a confident mathematician. Useful Mathematical Language

Angles	Angles are formed when 2 straight lines meet. Measured using degrees $\left(^{\circ}\right)$.
Acute angles	Smaller than 90 degrees.
Right angles	Measure exactly 90 degrees.
Obtuse angles	Greater than 90 degrees but less than 180 degrees.
Reflex angles	Greater than 180 degrees.
Area	The amount of surface a shape takes up. Measured in centimetres squared (cm^{2}).
Calculate	Work out
Capacity	The amount that something can hold. It can be measured in litres, millilitres or in cubic centimetres e.g. $100 \mathrm{~cm}^{3}$.
Century	$=100$ years
Decade	$=10$ years
Degree	The unit of measurement we use for measuring angles and temperatures.

	To find the difference between 2 numbers, you need to take the smaller number away from the larger one. E.g. the difference between 10 and 4 is 6.
Difference	A triangle with sides of equal lengths and equal angles (all equal 60°).
Factors	A factor is a whole number which will divide exactly into another whole number. E.g. the factors of 12 are 1, 12, 2, 6, and 4.
Inverse operation	If you have a calculation with a missing number, you can use the inverse operation to solve it. + and - are the inverse of each other x and \div are the inverse of each other
	To find the mean of a set of numbers, you add all the numbers together and then divide by the number of results you have
Mean	

Multiple	Multiples are whole numbers that a larger number can be made of by adding lots of the smaller number together. E.g. 12 is a multiple of 3
Percentage (\%)	Means 'out of 100'. $20 \%=20$ out of 100
Perimeter	The distance around the outside of a shape.
Prime numbers	Numbers which will divide exactly only by themselves and 1. These are the prime numbers to 30: 1237111317192329
Product	The answer when numbers have been multiplied together. E.g. the product of 3 and 4 is 12
Right-angled triangle	A triangle where one of the angles is right angle $\left(90^{\circ}\right)$.
Scalene triangle	A triangle where no sides are the same length and no angles are the same measurement.

	The product when a number is multiplied by itself. Square number to 100 are: 149162536496481100
Square number	When numbers have been added together. E.g. the sum of 3 and 4 is 7

Place adue

Millions | Hundreds |
| :---: |
| of |
| Thousands |
| Thousands |
| of |
| Tens |
| Thousands |
| Hundreds |

Rounding

Rounding Rap
Find the place value and circle the digit.

Move to the right and under line it.
$0-4$ the circle stays the same.
but 5-9, adding 1 is the game!
Now, flex your muscles, just like a hero.

Digits to the right -- change to 0 .
All the other numbers, they stay the same.

Yo!!! You re a winner at the rounding game!

Addition

Learn your number facts (pairs of numbers that add to 10,20 and 100).

Here are some different written methods you could use:

Partitioning...

$$
\begin{aligned}
& 14+28= \\
& 10+20=30 \\
& 4+8=12 \\
& 30+12=42
\end{aligned}
$$

Columns...
Method 1

Method 2

$$
\begin{array}{r}
277 \\
+\quad 93 \\
\hline 364
\end{array}
$$

Subtraction

Learn your number facts: learn the corresponding subtractions to addition pairs of numbers.
For example, if you learn that $5+3=8$, you also know that $8-5=3$ and $8-3$ equals 5 .

Here are some different written methods you could use:
Partitioning...

$$
\begin{aligned}
36-24 & =36-20-4=12 \\
436-204 & =436-200-4=232
\end{aligned}
$$

Number

$$
356-64
$$

line...

$12^{1} 3$ columns...

106 Multiplication Know your tables!

Here are some different written methods you could use:

Repeated addition... 13×5

$$
\begin{array}{r}
13 \\
13 \\
13 \\
13 \\
+13 \\
\hline 65
\end{array}
$$

Partitioning...

$$
14 \times 129
$$

$$
\begin{aligned}
10 \times 6 & =60 \\
4 \times 6 & =\frac{24}{84}
\end{aligned}
$$

'Grid' method...

Standard columns method...
Example 1:

$$
\begin{array}{r}
35 \\
\times \quad 5 \\
\hline 175
\end{array}
$$

Step 1-Start with the units. $5 \times 5=25$ (carry the 2 tens over to the tens column).

Step 2-3x5=15. Add the 2 (carried over) to give 17 .

Example 2:

Step 1 - Position the digits in their place value columns.

Step 2-Multiply the top units by the lower units: 5×6 $=30$. The ' 0 ' goes in the units column and the ' 3 tens' are carried over to the top ten.
Step 3 - Multiply the top tens by the lower units: $8 \times 6=$ 48. Add the 3 tens carried over which makes 51. The '1' is placed in the tens column and the ' 5 ' is carried over to the hundreds column.

Step 4-Multiply the top hundreds by the lower units: 4 $x 6=24$. Add the 5 (carried over) $=29$.

Step 5-Write a zero in the units column below the first answer to show that all the answer is multiplied by 10.

Step 6-Multiply the top units by the lower tens: $5 \times 1=$ 5. Write 5 in the tens column.

Step 7-Multiply the top tens by the lower tens: $8 \times 1=$ 8. Write the answer in the hundreds column.

Step 8-Multiply the top hundreds by the lower tens: 4 $x 1=4$. Write 4 in the thousands column.

Step 9 - Lastly, add the two products together using column addition: $2910+4850=7760$.

Step 10-Check your workings.

Division

Know your tables!

Once you know your tables, your understanding of inverse can help you to work out the answer. For example, if you know that $4 \times 7=28$ then you know that $28 \div 4=7$ AND $28 \div 7=4$.
Here are some different written methods you could use:

Chunking... $455 \div 3$

$$
\begin{array}{r}
455 \\
-300 \\
\hline 155 \\
-150 \\
-100 \text { lots of } 3 \\
\hline
\end{array}
$$

Short
division
(bus
5

$$
\frac{3}{2}=\frac{1 \text { lot of } 3}{=151 \mathrm{k} 2}
$$

stop)...
$455 \div 2$

$$
\begin{array}{r}
227.5 \\
2 \longdiv { 4 5 ^ { 1 5 . 0 } }
\end{array}
$$

A step by step guide to short division can be found at:
http://www.bgfl.org/bgfl/custom/resources_ftp/client_ftp/ks2/maths /school_booster/busstopdivision.html
This method is sometimes referred to as the 'bus stop' method.

Fraction wall

Use this wall to help you understand equivalence between fractions (fractions that have the same value).
Using this wall, you can see that $1 / 2=2 / 4=3 / 6=4 / 8=$ $5 / 10=6 / 12$.

$\frac{1}{1}$											
$\frac{1}{2}$						$\frac{1}{2}$					
$\overline{3}$				$\frac{1}{3}$				$\frac{1}{3}$			
$\frac{1}{4}$			$\frac{1}{4}$			$\frac{1}{4}$			$\frac{1}{4}$		
$\frac{1}{5}$		$\frac{1}{5}$			$\frac{1}{5}$		$\frac{1}{5}$			$\frac{1}{5}$	
$\frac{1}{6}$		$\frac{1}{6}$				$\frac{1}{6}$		$\frac{1}{6}$			
$\frac{1}{8}$	$\frac{1}{8}$		$\frac{1}{8}$		$\frac{1}{8}$	$\frac{1}{8}$	$\overline{8}$		$\overline{8}$		$\frac{1}{8}$
$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	10	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$		$\frac{1}{10}$	$\frac{1}{10}$
$\left\|\frac{1}{12}\right\|$	$\frac{1}{12}$										

Fractions, decimals and percentages

Try to learn these equivalences - they will be VERY useful!

Fraction	Decimal	Percentage
$\frac{1}{2}$	0.5	50%
$\frac{1}{4}$	0.25	25%
$\frac{3}{4}$	0.75	75%
$\frac{1}{5}$	0.2	20%
110	0.1	10%

Measures

Learn these measurements - they are VERY useful!

Liquids...

1 litre $=1000$ millilitres
($1 \mathrm{~L}=1000 \mathrm{ml}$)

Mass/weight...

$$
1 \begin{aligned}
1 \text { kilogram } & =1000 \text { grams } \\
1 / 2 \mathrm{~kg} & =0.5 \mathrm{~kg}=500 \mathrm{~g} \\
1 / 4 \mathrm{~kg} & =0.25 \mathrm{~kg}=250 \mathrm{~g} \\
3 / 4 \mathrm{~kg} & =0.75 \mathrm{~kg}=750 \mathrm{~g}
\end{aligned}
$$

Length...

1 kilometre $=1000$ metres
($1 \mathrm{~km}=1000 \mathrm{~m}$)
1 metre $=100$ centimetres
$(1 \mathrm{~m}=100 \mathrm{~cm})$
1 centimetre $=10$ millimetres
($1 \mathrm{~cm}=10 \mathrm{~mm}$)

5 miles $=8$ kilometres

Money...

$$
\begin{array}{r}
\text { One pound }=100 \text { pence } \\
50 p=£ 0.50 \\
25 p=£ 0.25
\end{array}
$$

$£ 1=100 p$
$10 \times 10 \mathrm{p}=£ 1$
$5 \times 20 \mathrm{p}=£ 1$

Time

One year $=365$ days

One leap year (every 4 years) $=366$ days
12 months in a year

> 30 days have September, April, June and November. All the rest have 31 .

Excepting February which has 28 days clear and 29 each leap year.

A fortnight $=2$ weeks

A week = 7 days
A day $=24$ hours
An hour $=60$ minutes A
minute $=60$ seconds

PARALLEL

means

lines which never cross \&

stay the same distance apart

PERPENDICULAR

 means
2D shapes

circle
1 curved side
0 corners

square
4 equal straight sides
4 corners
4 right angles

rectangle
4 straight sides
4 corners
4 right angles

triangle
3 straight sides
3 corners

hexagon
6 straight sides
6 corners

octagon
8 straight sides
8 corners

pentagon

5 straight sides
5 corners

Types of quadrilateral

Square

Properties:

- all sides the same length
- 4 lines of symmetry
- 4 right angles
- 2 pairs of parallel sides

Trapezium

Properties:

- 1 pair of parallel sides

Rhombus

Properties:

- all sides the same length
- opposite angles are equal
- 2 lines of symmetry
- 2 obtuse, 2 acute angles
- 2 pairs of parallel sides

Kite

Properties:

- 2 pairs of adjacent sides are equal
- opposite angles are equal
- 1 line of symmetry

Parallelogram

Properties:

- opposite sides are equal length
- opposite angles are equal
- 2 pairs of parallel sides
- 2 obtuse, 2 acute angles
- No lines of symmetry

Rectangle

Properties:

- opposite sides are equal length
- 2 lines of symmetry
- 4 right angles
- 2 pairs of parallel sides

Cylinder

Cubold

Triangular based
pyramid

Features of 3D shapes

Angles in shapes

The angles of any triangle will always add up to

The angles of any quadrilateral will always add up to 360°

O/OU!S D 70 S\#4D

Transformations

reflection

 - rotation

translation

translation

Useful websites

There are several good websites for practising Maths at home.
You may like to look at:
http://resources.woodlands-junior.kent.sch.uk/maths/
http://www.mathsisfun.com/ - Covers all areas of Maths. Lots of good logic puzzles!
http://www.coolmath4kids.com/ - Covers all areas of maths http://www.bbc.co.uk/bitesize/ks2/maths/ - Covers all areas of maths
http://www.transum.org/Software/SW/Starter_of_the_day/i n dex.htm - Good for years 5 and 6.
http://www.maths-games.org/times-tables-games.html - Good website for grouping games for all areas of maths from various websites. http://www.mad4maths.com/ - Fun games for KS2 children. http://www.crickweb.co.uk/ks2numeracy.html - Good variety of maths games.
http://www.topmarks.co.uk/Flash.aspx?f=SpeedChallenge
Speed challenge activities for practising times tables, rounding, number bonds.
http://mathszone.webspace.virginmedia.com/mw/add_sub/3d_3 d_add.swf - Column addition.
http://www.amblesideprimary.com/ambleweb/mentalmaths/pyra mid.html - Pyramid addition.
http://mathsframe.co.uk/en/resources/resource/48/column_su btraction - Various maths practise.

